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Abstract

Channel allocation has been extensively studied in the
framework of cellular networks, but the emergence of new
system concepts, such as cognitive radio systems, bring this
topic into the focus of research again. In this paper, we pro-
vide a formal analysis of the selfish multi-radio channel al-
location problem using game theory. We conclude that in
spite of the non-cooperative behavior of such devices, their
channel allocation results in a Pareto- and system-optimal
solution. Furthermore, we present a simple algorithm to
achieve this efficient channel allocation. To the best of our
knowledge, our paper is the first contribution to this impor-
tant topic.

1. Introduction

Frequency Division Multiple Access (FDMA)is one of
the widely used techniques that enable the simultaneous
communication of several users on a given frequency band
[14, 15]. The basic principle of FDMA is to split up the
available bandwidth to distinct sub-bands calledchannels.
Assigning the radio transmitters to these channels is com-
monly referred to as thechannel allocationproblem1. Not
surprisingly, an efficient channel allocation is a cornerstone
of the design of existing wireless networks.

The channel allocation can be either fixed or dynamic,
both approaches have advantages and drawbacks, depend-
ing on the considered scenario. Accordingly, there has been
a significant amount of work that addresses both types of
channel allocation in cellular networks. To study fixed chan-
nel allocation, most authors used graph coloring / labelling
techniques (e.g., in [16]), whereas for dynamic channel allo-
cation different solutions were developed (e.g. as presented
in [4, 17]). For a comprehensive survey on the topic, we re-
fer the reader to [9].

1 In the literature, the terms channel assignment and frequency assign-
ment are also used for the channel allocation problem.

Recently, several researchers have considered devices
using multiple radios, notably in mesh networks. In the
multi-radio communication context, channel allocation and
access also became one of the crucial topics. Related work
on multi-radio medium access includes [1, 2, 13].

In all the related work cited so far, their authors assumed
that the radio devices cooperate to achieve a high system
performance. This assumption might not hold, as the users
of these devices are usually selfish and they want to maxi-
mize their own performance without necessarily respecting
the system objectives. Game theory provides a straightfor-
ward tool to study channel allocation in competitive wire-
less networks. A fixed channel allocation game was pre-
sented in [7] based on graph coloring. Furthermore, the au-
thors of [12] present a selfish and a cooperative channel al-
location protocol, and study their performance.

A complementary method for medium access, which is
usually applied together with FDMA, is to use a protocol
that enablesTime Division Multiple Access (TDMA). This
means that the devices coordinate their access to a particular
channel over time. One widely used method is a distributed
random access method called CSMA/CA [14]. Game the-
ory has been applied to the CSMA/CA protocol [6, 10] and
to the Aloha protocol [11].

In this paper, we present a game-theoretic analysis of
fixed channel allocation strategies of devices using multi-
ple radios. We assume that a channel access is solved on a
particular channel and leave the study of joint channel allo-
cation and medium access for future study. The work pre-
sented in this paper is a first step towards the deeper un-
derstanding of the non-cooperative behavior of selfish de-
vices with multiple radios and is applicable in a broad con-
text, notably in cognitive radio systems [8]. To the best of
our knowledge, our paper is the first to address the problem
of multi-radio channel allocation in competitive networks.

The paper is organized as follows. In Section 2, we intro-
duce our system model along with a game-theoretic descrip-
tion of competitive channel allocation. Section 3 provides a
comprehensive analysis of the channel allocation game. Fi-
nally, we conclude in Section 4.
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Figure 1. An example for a channel alloca-
tion with a constant rate function R(kc). Here
|N | = 4, k = 4 and |C| = 5.

2. System Model

We make the following assumptions with respect to the
communication system. We assume an available frequency
band divided into orthogonal channels of the same band-
width using the FDMA method. We also assume that these
channels have the same expected channel characteristics.
We denote the set of available channels byC. There ex-
ists a set of usersN , who want to access these channels.
Each user owns a device equipped withk ≤ |C| radio trans-
mitters, all having the same communication capabilities. We
assume that there is a mechanism that enables user devices
to use multiple channels for their traffic at the same time
(as it is implemented in [1] for example). We denote the
number of radios of useri using channelc by ki,c for ev-
ery c ∈ C. For the simplicity of presentation, let us denote
the set of channels used by useri by Ci, whereCi ⊂ C and
0 ≤ |Ci| ≤ k. We further assume that there is no limita-
tion on the number of radios per channel.

We formulate the multi-radio channel allocation problem
as a non-cooperative game as follows. We define thestrat-
egyof useri as its channel allocation vector:

si = {ki,1, . . . , ki,|C|} (1)

Hence, its strategy consists in defining the number of radios
on each of the channels2. The strategy vector of all users
defines the strategy matrixS, where the rowi of the ma-
trix corresponds to the strategy vector of useri:

S =




s1

. . .
s|N |


 (2)

Furthermore, we denote the strategy matrix except for the
strategy of useri by S−i:

2 Note that this number can be zero.
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Figure 2. Strategy matrix of the example in
Figure 1.

Figure 1 presents an example channel allocation, and
Figure 2 presents the strategy matrix that corresponds to this
example.

The total number of radios employed by useri can be
written aski =

∑
c ki,c. Similarly, we can obtain the num-

ber of radios using a particular channelkc =
∑

i ki,c. Each
user has a radio on channelc1, but channelc5 is occupied
only by useru2. Useru3 employs two radios on channel
c2 to get more bandwidth on that particular channel. Note
that in Figure 1, we haveku1 = 4, ku2 = 3, ku3 = 4 and
ku4 = 2, meaning that useru2 andu4 are not using all of
their radios.

We assume that the users are rational and their objec-
tive is to maximize theirutility in the network. We denote
the utility of useri by Ui. For simplicity, we assume that
the user wants tomaximize its total ratein the system and
thus the utility function is the achieved bitrate. We leave the
study of other utility functions for future work.

We assume that the total rate on channelc is shared
equally among the radio transmitters using that channel.
This fair rate allocation is achieved for example by us-
ing a reservation-based TDMA schedule on a given chan-
nel. A similar result was reported by Bianchi in [3] for the
CSMA/CA protocol using optimal backoff window values.
Even if the radio transmitters are controlled by selfish users
in the CSMA/CA protocol, they can achieve this fair sharing
as shown in [6]. We further assume that thetotal available
bitrate Rc(kc) on a channelc (i.e., the sum of the achieved
bitrate of all users on channelc) is a non-increasing func-
tion of the number of radioskc deployed on this channel.
In fact Rc(kc) is independent ofkc for a TDMA proto-
col and for the CSMA/CA protocol using optimal backoff
window values [3]. In practice, the backoff window values
used in the CSMA/CA protocol implementation (e.g., in the
802.11 standard) are not optimal; and due to packet colli-
sionsRc(kc) becomes a decreasing function forkc > 1.
Since we assume that channels have the same bandwidth
and channel characteristics, the rate function does not de-
pend on the channel and thus we can write thatR(kc) for
any channelc ∈ C. If kc = 0, we defineR(0) = 0; note
however that this case has no relevance in our model.



kc

R(kc)
reservation TDMA

optimal CSMA/CA

practical CSMA/CA

Figure 3. The total available rate R(kc) for dif-
ferent MAC protocols.

Figure 3 presents the total rateR(kc) as a function of the
number of radios using channelc.

If user i chooses to operateki,c radios in a given chan-
nel, its rate can be written asRi,c = ki,c

kc
·R(kc). Note that

Ri,c > 0 for all c ∈ C, whereki,c > 0.
Thus, we can write the utility function for useri as:

Ui(S) =
∑

c∈C
Ri,c =

∑

c∈C

ki,c

kc
·R(kc) (3)

2.1. Game-Theoretic Preliminaries

We assume that the transmitters reside in the same colli-
sion domain. We model the channel allocation problem with
a single stage game, which corresponds to a fixed channel
allocation among the users.

In order to study the strategic interaction of the users, we
introduce some game-theoretic concepts:

Definition 1 (Nash Equilibrium – NE). The strategy ma-
trix S∗ = {s∗1, . . . , s∗|N|} defines a Nash Equilibrium (NE),
if for every useri we have:

Ui(s∗i , S
∗
−i) ≥ Ui(s

′
i, S

∗
−i) (4)

for every strategys
′
i.

In other words, in a NE none of the users can unilater-
ally change its strategy to increase its utility. A NE solu-
tion is often inefficient from the system point of view. We
characterize the efficiency of the solution by the concept of
Pareto-optimality:

Definition 2 (Pareto-Optimality). The strategy matrixSpo

is Pareto-optimal if for every useri the following condition
holds:

Ui(Spo) ≥ Ui(S
′
),∀S′ (5)

This means that a Pareto-optimal channel allocationSpo

cannot be improved upon without decreasing the utility of
at least one player.

3. Analytical Results

In this section, we present our analytical results. It is
straightforward to see that if the total number of radios is
smaller than or equal to the number of channels, then a flat
channel allocation, in which every channel is used by a sin-
gle radio, is an equilibrium.

Fact 1. If |N | · k ≤ |C|, then any channel allocation, in
whichkc = 1, ∀c ∈ C is a Pareto-optimal NE.

For the remainder of the paper, we assume that|N | ·k >
|C|, hence the devices have a conflict during the channel al-
location process. In the following lemmas, we express nec-
essary conditions for a Nash Equilibrium. The first neces-
sary condition shows that the users should use all of their
radios.

Lemma 1. In a NE of the multi-radio channel allocation
game,ki = k,∀i, meaning that each user is using all of its
radios to communicate.

In the example presented in Figure 1, Lemma 1 does not
hold for usersu2 andu4. Hence, the example cannot be a
NE.

Proof. We can prove the lemma by contradiction. Assume
that there exists a NE, in which useri uses onlyki < k ra-
dios. As mentioned previously, in our model we assume that
k ≤ |C| and we assumed that in the NE|Ci| ≤ ki < k, thus
we necessarily have|Ci| < |C|. This implies that there al-
ways exists a channelc /∈ Ci. If the user deploys an addi-
tional radio on this channelc, then she increases her util-
ity due to the fact thatRi,c > 0 for ki,c = 1. Hence, we
have a contradiction and the original allocation cannot be a
NE.

Let us now consider a NE strategy matrix in the multi-
radio channel allocation game denoted byS∗, wheres∗i ∈
S∗ is the NE strategy of useri (i.e., the i-th row of the ma-
trix). Let us consider two arbitrary channelsb andc in this
NE strategy allocation. Without loss of generality, we as-
sume that there are more radios using channelb, meaning
thatkb ≥ kc, and denote their difference by:

δb,c = kb − kc (6)

Assume that useri moves one of its radios from channel
b to c. Let us define thebenefit of change, i.e. the difference
in the utility of useri, as follows:

∆ = Ui(s
′
i, S

∗
−i)− Ui(s∗i , S

∗
−i)

=
ki,b − 1
kb − 1

·R(kb − 1) +
ki,c + 1
kc + 1

·R(kc + 1)

− ki,b

kb
·R(kb)− ki,c

kc
·R(kc) (7)

We can show a second necessary condition for a NE.



Lemma 2. If ki,b > 0, ki,c = 0 andδb,c > 1 for any user
i, thenS∗ is not a NE channel allocation.

This means that useri has a benefit of moving one ra-
dio to a channel, where she has no radios if the difference
of the number of radios deployed on the two channels ex-
ceeds one. In the example presented in Figure 1, Lemma 2
holds e.g. for useru1 and the channelsb = c4 andc = c5.
Hence, the example cannot be a NE.

Proof. Assume thatS∗ is a NE channel allocation. Suppose
that useri moves one of its radios from channelb to c. Us-
ing the conditions in the lemma, we can write the benefit of
change defined in (7) as:

∆ =
ki,b − 1
kb − 1

R(kb − 1) +
1

kc + 1
R(kc + 1)− ki,b

kb
R(kb)

=
ki,b

kb − 1
R(kb − 1)− 1

kb − 1
R(kb − 1)

+
1

kc + 1
R(kc + 1)− ki,b

kb
R(kb)

Let us notice that the sum of the first and last terms is al-
ways strictly greater than 0, becauseδb,c > 1 implies that
kb > 1. Hence, it is enough to investigate the sign of the
sum of the two other terms. Using (6), we can rewrite the
sum of the two middle terms as:

R(kc + 1)
kc + 1

−R(kc − 1)
kc − 1

=
R(kc + 1)

kc + 1
−R(kc + δb,c − 1)

kc + δb,c − 1

Due to the assumptionδb,c > 1 and the non-increasing rate
functionR(·), we have:

R(kc + 1)
kc + 1

− R(kc + δb,c − 1)
kc + δb,c − 1

≥ 0

Hence, the benefit of change is positive and thusS∗ cannot
be a NE. This contradiction concludes the proof.

Let us now derive the third necessary condition.

Lemma 3. If ki,b > 1, ki,c = 0 andδb,c = 1 for any user
i, thenS∗ is not a NE.

In the example presented in Figure 1, the conditions of
Lemma 3 hold for useru3 and the channelsb = c2 andc =
c3. Hence, the example cannot be a NE.

Proof. We prove the lemma by contradiction. Assume that
S∗ is a NE and there exists a useri with ki,b > 1, ki,c = 0
andδb,c = 1. Assume that this user moves one of its radios
from channelb to c. Let us express the benefit of change (7)
given the conditions of the lemma:

∆ =
ki,b − 1
kb − 1

·R(kb−1)+
1

kc + 1
·R(kc+1)− ki,b

kb
·R(kb)

Usingδb,c = 1, we can reformulate this expression as fol-
lows:

∆ =
ki,b − 1
kb − 1

·R(kb − 1)− ki,b − 1
kb

·R(kb) (8)

Note that (8) is always positive forkb ≥ ki,b > 1. Hence
moving one radio is beneficial to useri andS∗ cannot be a
NE.

Suppose now that we have two channelsb andc such that
kb = kc. Assume that we have a useri with ki,b > ki,c > 0.
Let us define the integer valueγi,b,c as:

γi,b,c = ki,b − ki,c (9)

Using the value introduced above, we can derive the
fourth necessary condition.

Lemma 4. If γi,b,c ≥ 2, ki,c = 0 andδb,c = 0 for any user
i, thenS∗ is not a NE.

Proof. Assume that we have a NES∗ in which γi,b,c ≥ 2,
ki,c = 0 andδb,c = 0 for useri. Assume that useri moves
one of its radios from channelb to c and let us express the
benefit of change (7) as:

∆ =
γi,b,c − 1

kc − 1
R(kc − 1) +

1

kc + 1
R(kc + 1)− γi,b,c

kc
R(kc)

= γi,b,c(
R(kc − 1)

kc − 1
− R(kc)

kc
)− (

R(kc − 1)

kc − 1
− R(kc + 1)

kc + 1
)

Since the multiplier ofγi,b,c is always positive in the first
term, we have a positive benefit of change (i.e.,∆ > 0) if:

γi,b,c >

R(kc−1)
kc−1 − R(kc+1)

kc+1

R(kc−1)
kc−1 − R(kc)

kc

After some simplifications, we get:

γi,b,c >
kc(kc + 1) ·R(kc − 1) + kc(kc − 1) ·R(kc + 1)

(k2
c − 1) ·R(kc) + kc(kc + 1) ·R(kc − 1)

Note that all terms in the expression are strictly positive,
thus we can increase its value as follows:

γi,b,c >
kc(kc + 1) ·R(kc − 1) + kc(kc − 1) ·R(kc + 1)

kc(kc + 1) ·R(kc − 1)

= 1 +
kc(kc − 1) ·R(kc + 1)
kc(kc + 1) ·R(kc − 1)

Let us notice that the fraction is strictly positive, but smaller
than one. Hence, we can write that∆ > 0 for:

γi,b,c ≥ 2

This implies that moving the radio from one channel to an-
other is beneficial for useri and thereforeS∗ cannot be a
NE.



Let us now consider a channel allocationS and let us
define the set of channelsCmax with the maximum num-
ber of radios (i.e., whereb ∈ Cmax haskb = maxl∈C kl).
Similarly, let us define the set of the least loaded channels
Cmin, wherec ∈ Cmin haskc = minl∈C kl. We denote
the set of the remaining channels byCrem. In Figure 1,
Cmax = {c1}, Cmin = {c5} andCrem = {c2, c3, c4}.

Using Lemmas 1, 2, 3 and 4, we conclude on a fifth nec-
essary condition.

Proposition 1. In a NES∗ in the multi-radio channel allo-
cation game, we haveδb,c ≤ 1 for all b, c ∈ C.

Proof. In the proof, we show that if there existb, c ∈ C
such thatδb,c > 1 then at least one of the lemmas apply and
henceS∗ cannot be a NE.

Let us now consider two channelsb andc such thatb ∈
Cmax andc ∈ Cmin.

• If there exists useri such thatki,b > 0 andki,c = 0,
then Lemma 2 applies.

• If for all usersi with ki,d > 0, we haveki,c > 0, then
there must be at lease one userj such thatkj,b > 1
due to the assumption thatδb,c > 1 (i.e., userj has two
or more radios on channelb). Due to the assumption
k ≤ C, there must be a channela such thatkj,a = 0.
If a ∈ Cmin, then Lemma 2 applies and ifa ∈ Crem,
then Lemma 3 holds.

• Finally we will prove that such a case cannot exist,
where none of the above conditions apply. Since the
above cases do not apply, userj haskj,c > 0 and
kj,d > 0 for all c ∈ Cmin andd ∈ Crem (i.e., user
j has a radio on every channels that belong to the sets
Cmin andCrem; whereas it has two radios on at least
the channelb). Hence, we have the following condi-
tion on the number of radios deployed by userj:

k = kj ≥ |Cmin|+ |Crem|+ 2 (10)

Furthermore, let us consider another useru with
ku,c = 0. Since c ∈ Cmin, we know that such a
user exists. Clearly, then we must haveku,b = 0,∀b ∈
Cmax as well, otherwise Lemma 2 would apply to user
u. Furthermore, useru cannot have more than one ra-
dio on any channela ∈ Crem, because then Lemma 3
would apply. Similarly, useru can have at most one ra-
dio per channel for channelsa ∈ Cmin anda 6= c, oth-
erwise the conditions of Lemma 4 are violated. We can
write a condition on the number of radios useru de-
ploys:

k = ku ≤ |Crem|+ |Cmin| − 1 (11)

From Lemma 1, we have thatkj = ku = k. Since
|Cmin| and|Crem| are non-negative numbers, the im-
possibility of this case follows from the inequalities
(10) and (11).
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Figure 4. An example for a NE channel alloca-
tion. Here |N | = 7, k = 4 and |C| = 6. Note that
user u1 belongs to the group of users which
have an exception in the second condition.

This concludes the proof.

Combining these results, we can establish a set of neces-
sary and sufficient conditions for the NE.

Theorem 1. Assume that we have|N | · k > |C|. Then a
channel allocationS∗ is a NE iff the two following condi-
tions hold:

• δb,c ≤ 1 for anyb, c ∈ C and

• ki,c ≤ 1 for anyb, c ∈ C and i ∈ N except forusers
j with @c ∈ Cmin such thatkj,c = 0. For such a user
j, the second condition changes as follows:kj,c ≤ 1 if
c ∈ Cmax andγi,a,c ≤ 1 for any channela, c ∈ Cmin.

An example of a NE channel allocation is shown in Fig-
ure 4, where the second condition of the theorem has an ex-
ception for useru1. Figure 5 presents an example with no
exception on the second condition for any user.
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Figure 5. A NE channel allocation with no ex-
ception of the second condition. Here |N | =
4, k = 4 and |C| = 6.



Proof. Let us show that the above conditions are necessary.
Proposition 1 established that the first condition is neces-
sary. Lemmas 2, 3 and 4 make the second condition neces-
sary.

Now we prove that these conditions are sufficient as well.
According to the first condition of the theorem, the differ-
ence between the number of radios on any two channels
cannot be more than one, thus the setCrem does not exist.
This also means that any change consists in moving some
radios from channels inCmax to channels inCmin. Conse-
quently, the moves can be considered separately.

Let us thus consider the moving of one radio from a
channelb ∈ Cmax to a channelc ∈ Cmin which results in a
strategys

′
i for useri. Substitutingγi,b,c = ki,b − ki,c ≤ 1,

we can write the benefit of change expressed in (7) as fol-
lows:

∆ =
ki,c + γi,b,c − 1

kc
R(kc) +

ki,c + 1
kc + 1

R(kc + 1)

− ki,c + γi,b,c

kc + 1
R(kc + 1)− ki,c

kc
R(kc)

= (γi,b,c − 1)
(

R(kc)
kc

− R(kc + 1)
kc + 1

)

Note that second factor is always positive and hence the dif-
ference is non-positive forγi,b,c ≤ 1. For this value, the
strategy matrixS∗ defines a NE.

Theorem 1 establishes an interesting property about NE:
In fact, all NE channel allocations achieve load-balancing
over the channels inC. In the next theorem, we will show
that allowing selfish channel allocation over a wide band of
frequencies results in an efficient spectrum utilization.

Theorem 2. Assume that we have|N | · k > |C|. Then any
NE channel allocationS∗ is Pareto-optimal.

Proof. The proof is straightforward. In a NE channel allo-
cationS∗ we havekc > 0 for eachc ∈ C. Note that in
S∗, the sum of the utility of all usersUtotal = maxi

∑
i Ui

which implies the Pareto-optimality.

One can notice that the Pareto-optimal NE is also system
optimal, because it maximizes the total rate achieved by all
users.

We can use the following simple algorithm to achieve
one of these Pareto-optimal NE. Note that this algorithm
follows from the extensive-form representation [5] of the
channel allocation game and hence relies on the sequen-
tial action of the players. We emphasize that this algorithm
is centralized, because it needs a coordination between the
players to determine the order of allocating their radios. The
development of a distributed implementation is an impor-
tant part of our ongoing work.

Algorithm 1 Pareto-optimal NE channel allocation

1: for i = 1 to |N | do
2: for j = 1 to k do
3: if kc = kl, ∀c, l ∈ C then
4: use the radio on a channelc, whereki,c = 0
5: else
6: use the radio on a channelc, where kc =

minl∈C kl

7: end if
8: end for
9: end for

4. Conclusion

In this paper, we have considered the problem of com-
petitive channel allocation among devices using multi-
ple radios. Our main conclusion is that in spite of the
non-cooperative behavior of such devices, their Nash equi-
librium channel allocation achieves load-balancing and
is system-optimal. This solution is characterized by the
fact that the devices occupy the available channels al-
most evenly. Furthermore, we have provided a simple to
achieve this efficient channel allocation.
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