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Abstract— Channel allocation was extensively studied in the
framework of cellular networks. But the emergence of new system
concepts, such as cognitive radio systems, has brought this topic
into the focus of research again. In this paper, we study in detail
the problem of competitive multi-radio multi-channel allocation
in wireless networks. We study the existence of Nash equilibria in
a static game and we conclude that, in spite of the non-cooperative
behavior of such devices, their channel allocation results in a
load-balancing solution. In addition, we consider the fairness
properties of the resulting channel allocations and their resistance
to the possible coalitions of a subset of players. Finally, we present
three algorithms that achieve a load-balancing Nash equilibrium
channel allocation; each of them using a different set of available
information.

I. INTRODUCTION

Frequency Division Multiple Access (FDMA) is one of the
widely used techniques that enables several users to share a
communication medium that consists of a given frequency
band [22], [23]. The basic principle of FDMA is to split up
the available bandwidth to distinct sub-bands called channels.
Assigning the radio transceivers to these channels is commonly
referred to as the channel allocation problem.1 Not surpris-
ingly, an efficient channel allocation is a cornerstone of the
design of wireless networks.

In this paper, we present a game-theoretic analysis of
fixed channel allocation strategies of devices that use multiple
radios. Using a static non-cooperative game, we analyze the
scenario of a single collision domain, i.e., where each of the
devices can interfere with a transmission of every other device.
We derive the Nash equilibria in this game and show that
they result in load balancing over the channels. Our main
result, Theorem 1, shows that there exist two types of Nash
equilibria: in the first type, each user distributes his radios over
the available channels, whereas in the second type, some users
allocate multiple radios on certain channels. We also study
fairness issues and the problem of coalition formation in the
channel allocation problem. We show that a Nash equilibrium
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1In the literature, the terms channel assignment and frequency assignment
are also used for the channel allocation problem.

that resists coalitions of users is necessarily fair as well.
Furthermore, we propose three algorithms to achieve the Nash
equilibria. The first is a sequential algorithm that needs global
coordination, the second is a distributed algorithm that needs
perfect information and the third is a distributed algorithm that
is based on imperfect information. We provide the proof for
the convergence properties of these algorithms.

This work is a first step towards a deeper understanding of
the non-cooperative behavior of such devices and is applicable
in particular in the emerging field of cognitive radio systems
[15].

The paper is organized as follows. In Section II, we present
related work on channel allocation and channel access in
wireless networks. In Section III, we introduce our system
model along with a game-theoretic description of competitive
channel allocation. In Section IV, we provide a comprehensive
analysis of the Nash equilibria in the channel allocation game.
We study fairness issues in Section V. In addition, we provide
some results on coalition-proof Nash equilibria in Section VI.
In Section VII, we propose three algorithms to reach the
desired Nash equilibria and study their convergence properties.
Finally, we conclude in Section VIII.

II. RELATED WORK

There has been a significant amount of work on channel
allocation in wireless networks, notably for cellular networks.
Channel allocation schemes in cellular networks can be di-
vided into three categories: fixed channel allocation (FCA),
dynamic channel allocation (DCA) and hybrid channel allo-
cation (HCA), which combines the two former methods.

In a fixed channel allocation scheme, the same number
of channels are permanently allocated to the radios at the
base stations. To study fixed channel allocation, most authors
used graph coloring / labelling techniques (e.g., in [24]). The
FCA method performs very well under a high traffic load,
but it cannot adapt to changing traffic conditions or user
distributions.

To overcome the inflexibility of FCA, many authors pro-
pose dynamic channel allocation (DCA) methods (e.g. as
presented in [9], [25]). In contrast to FCA, there is no constant
relationship between the base stations in a cell and their



IEEE INFOCOM 2007 2

respective channels. All channels are available for each base
station and they are assigned dynamically as new users arrive.
Typically, the available channels are evaluated according to
a cost function and the one with the minimum cost is used
[10]. Due to its dynamic property, the DCA can adapt to
changing traffic demand. Because adaptation implies some
cost, it performs worse than FCA in the case of a heavy traffic
load. For a comprehensive survey on the topic, we refer the
reader to [16].

Due to the emergence of alternative communication tech-
nologies, channel allocation schemes are becoming a focus of
research again. Mishra et al. [19] propose a channel allocation
method for wireless local area networks (WLANs) based
weighted graph coloring. Zheng and Cao [26] present a rule-
based spectrum management scheme for cognitive radios.

Recently, several researchers have considered devices using
multiple radios, notably in mesh networks (for a survey on
mesh networks, see [2]). In the multi-radio communication
context, channel allocation and access also became one of the
crucial topics. Related work on multi-radio medium access
includes, but is not restricted to [1], [3], [21].

In all the related work cited so far, the authors assumed
that the radio devices cooperate to achieve a high system
performance. But this assumption might not hold, as the users
of these devices are usually selfish and they want to maximize
their own performance without necessarily respecting the
system objectives. Game theory provides a straightforward
tool to study medium access problems in competitive wireless
networks and has been applied to the CSMA/CA protocol
[7], [17] and to the Aloha protocol [18]. Furthermore, a fixed
channel allocation game was presented in [14] based on graph
coloring. Unfortunately, their model does not apply to multi-
radio devices. For cognitive radio networks, the authors of
[20] propose a dynamic channel allocation scheme based on a
potential game. In addition, they suggest another technique
based on machine learning with different utility functions.
Cao and Zheng [8] propose distributed spectrum allocation
in cognitive radio networks based on local bargaining.

III. SYSTEM MODEL AND CONCEPTS

We assume that the available frequency band is divided into
orthogonal channels of the same bandwidth using the FDMA
method (e.g., 8 orthogonal channels in case of the IEEE
802.11a protocol). We denote the set of available orthogonal
channels by C.

In our model, pairs of users want to communicate with each
other over a single hop. We assume that each user participates
in only one such communication session, hence we denote
the set of such communication links by N . Each user owns a
device equipped with k ≤ |C| radio transmitters, all having
the same communication capabilities. The communication
between two devices is bidirectional and they always have
some packets to exchange. Due to the bidirectional links, the
sender and the receiver are able to coordinate and thus to select
the same channels to communicate. Accordingly, we refer to
each communicating pair as a selfish player, whose objective
is to maximize its total rate or channel utilization. We will

use this term to denote both the communicating pair of users
and the communication link between them. We assume that
there is a finite number of players. We further assume that
each device can hear the transmissions of every other device
if they are using the same channel. This means that the players
reside in a single collision domain. We make this assumption
to avoid the hidden terminal problem described for example in
[23]. Because the devices reside in a single collision domain,
it is reasonable to assume that the channels have roughly the
same expected channel characteristics.

We assume that there is a mechanism that enables the
players to use multiple channels to communicate at the same
time (as it is implemented in [1] for example). We denote the
number of radios of player i using channel c by ki,c for every
c ∈ C. For the simplicity of presentation, let us denote the
set of channels used by player i by Ci, where Ci ⊂ C and
0 ≤ |Ci| ≤ k. We further assume that there is no limitation on
the number of radios per channel.

We formulate the multi-radio channel allocation problem as
a non-cooperative game as follows. We define the strategy of
player i as its channel allocation vector:

si = {ki,1, . . . , ki,|C|} (1)

Hence, his strategy consists in defining the number of radios
on each of the channels.2 The strategy vectors of all players
defines the strategy matrix S (i.e., the strategy profile), where
the row i of the matrix corresponds to the strategy vector of
player i:

S =




s1

. . .
s|N |


 (2)

Furthermore, we denote the strategy matrix except for the
strategy of player i by S−i.

Figure 1 presents an example channel allocation with six
available channels (|C| = 6), four players (|N | = 4) and each
user device equipped by four radios (k = 4).

channels

c1 c2 c3 c4 c5

channels: c1 - c6
number of radios

p1 p1 p1 p1

p2 p2 p2

p3 p3

p3

p3

p4

p4

players (pairs): p1 - p4

c6

p2

Fig. 1. An example for a channel allocation, where |C| = 6, |N | = 4 and
k = 4.

The total number of radios employed by player i can
be written as ki =

∑
c ki,c. Similarly, we can obtain the

number of radios using a particular channel kc =
∑

i ki,c. In
Figure 1, each player has a radio on channel c1, but channel
c5 is occupied only by player p2. Player p3 employs two
radios on channel c2 to get more bandwidth on that particular

2Note that this number can be zero.
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channel. Regarding the number of radios per player, we have
kp1 = kp2 = kp3 = 4 and kp4 = 2, meaning that player p4 is
not using all of his radios.

We assume that the players are rational and their objective
is to maximize their payoff in the network. We denote the
payoff of player i by Ui. For simplicity, we assume that each
player i wants to maximize his total rate (Ri) in the system
and thus the payoff function is the achieved bitrate.

We assume that the total rate on channel c is shared equally
among the radio transmitters using that channel. This fair rate
allocation is achieved for example by using a reservation-
based TDMA schedule on a given channel. A similar result
was reported by Bianchi in [6] for the CSMA/CA protocol.
Even if the radio transmitters are controlled by selfish users in
the CSMA/CA protocol, they can achieve this fair sharing as
shown in [7]. We further assume that the total available bitrate
Rc(kc) on a channel c (i.e., the sum of the achieved bitrate of
all players on channel c) is a non-increasing function of the
number of radios kc deployed on this channel. In fact Rc(kc) is
independent of kc for a TDMA protocol and for the CSMA/CA
protocol using optimal backoff window values [6]. In practice,
the backoff window values used in the CSMA/CA protocol
implementation (e.g., in the 802.11 standard) are not optimal;
and due to packet collisions Rc(kc) becomes a decreasing
function of kc for kc > 1. As we assume that channels have the
same bandwidth and channel characteristics, the rate function
does not depend on the channel and thus we have the total rate
R(kc) for any channel c ∈ C. If kc = 0, we define R(0) = 0;
note however that this case has no relevance in our model.
We emphasize that our system model is general enough to
incorporate many multiple access techniques, such as TDMA
or CSMA/CA.

Figure 2 presents the total rate R(kc) as a function of the
number of radios using channel c.

kc

R(kc)

reservation TDMA

optimal CSMA/CA

practical CSMA/CA

Fig. 2. The total available rate R(kc) for different MAC protocols.

If player i chooses to operate ki,c radios in a given channel,
his rate on this channel can be written as Ri,c = ki,c

kc
·R(kc).

We assume that the players do not cheat at the MAC layer
as opposed to the model for example in [7]. Thus, we can
write that Ri,c > 0 for all c ∈ C, where ki,c > 0. Recall
that in Figure 1, the higher the number of radios in a given
channel is, the lower the rate per radio is. Hence, for example
for player p2, we have R2,1 < R2,4 < R2,3 < R2,5. We can
obtain the total rate Ri for player i by Ri =

∑
c Ri,c.

In summary, we can write the payoff function for player i

as:

Ui(S) = Ri =
∑

c∈C
Ri,c =

∑

c∈C

ki,c

kc
·R(kc) (3)

We model the channel allocation problem with a single stage
game, which corresponds to a fixed channel allocation among
the players.

In order to study the strategic interaction of the players, we
first introduce the concept of Nash equilibrium [12], [13].

Definition 1: (Nash Equilibrium – NE): The strategy matrix
S∗ = {s∗1, . . . , s∗|N|} defines a Nash Equilibrium (NE), if for
every player i, we have:

Ui(s∗i , S
∗
−i) ≥ Ui(s

′
i, S

∗
−i) (4)

for every strategy s
′
i.

In other words, in a NE none of the players can unilaterally
change its strategy to increase its payoff. A NE solution is
often inefficient from the system point of view. We charac-
terize the efficiency of the solution by the concept of Pareto-
optimality.

Definition 2: (Pareto-Optimality): The strategy matrix Spo

is Pareto-optimal if @S′ such that:

Ui(S
′
) ≥ Ui(Spo), ∀i (5)

with strict inequality for at least one player i.
This means that in a Pareto-optimal channel allocation Spo one
cannot improve the payoff of any player i without decreasing
the payoff of at least one other player j.

IV. NASH EQUILIBRIA

In this section, we study the existence of Nash equilibria
in the single collision domain channel allocation game. Note
that we omit the proofs of the results due to space limitations,
but we provide an extended version of this work in [11].

It is straightforward to see that if the total number of radios
is smaller than or equal to the number of channels, then a flat
channel allocation, in which the number of radios per channel
does not exceed one, is a Nash equilibrium.

Fact 1: If |N | · k ≤ |C|, then any channel allocation, in
which kc ≤ 1,∀c ∈ C is a Pareto-optimal NE.

For the remainder of the paper, we assume that |N |·k > |C|,
hence the devices have a conflict during the channel allocation
process.

In the following, we consider a NE strategy matrix in the
multi-radio channel allocation game denoted by S∗, where
s∗i ∈ S∗ is the NE strategy of player i (i.e., the i-th row of
the matrix).

We first show the following intuitive result: a selfish player
should use all of his radios in order to maximize his total rate.

Lemma 1: If S∗ is a NE of the multi-radio channel alloca-
tion game, then ki = k,∀i.

In the example presented in Figure 1, Lemma 1 does not
hold for players p4, because it uses only two radios. Hence,
the example cannot be a NE.

Let us now consider two arbitrary channels b and c. Without
loss of generality, we assume that there are more radios using
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channel b, meaning that kb ≥ kc, and denote their difference
by:

δb,c = kb − kc (6)

We define another difference value γi,b,c as:

γi,b,c = ki,b − ki,c (7)

Let us now divide the channels in a channel allocation
S into three sets. We define the set of channels Cmax with
the maximum number of radios, i.e., where b ∈ Cmax has
kb = maxl∈C kl. Similarly, let us define the set of the least
occupied channels Cmin, where c ∈ Cmin has kc = minl∈C kl.
In Figure 1, Cmax = {c1} and Cmin = {c5, c6}.

In the following proposition, we show that in a Nash equi-
librium, the difference in the total number of radios between
any two channels cannot exceed one.

Proposition 1: If S∗ is a NE in the multi-radio channel
allocation game, then δb,c ≤ 1 for all b, c ∈ C.

Using Proposition 1, we express a set of necessary and
sufficient conditions for the NE.

Theorem 1: Assume that |N | · k > |C|. Then a channel
allocation S∗ is a NE iff the two following conditions hold:
• δb,c ≤ 1 for any b, c ∈ C and
• case 1: ki,c ≤ 1 for any c ∈ C,

case 2: if ∃j such that kj,c′ > 0, ∀c′ ∈ Cmin, then kj,b′ ≤
1 for all b

′ ∈ Cmax and γi,a′ ,c′ ≤ 1 for any channel
a
′
, c
′ ∈ Cmin.

An example of a NE channel allocation corresponding to the
first case is shown in Figure 3. Figure 4 presents an example
for the second case.

channelsc1 c2 c3 c4 c5

p1 p1p1

p2

p2

p2 p3

p3

p3

p4

p4 p4

c6

p1

p2 p3

p4

Fig. 3. A NE channel allocation corresponding to the first case of Theorem 1.
Here |C| = 6, |N | = 4 and k = 4. Each player distributes his radios over
the channels (i.e., ki,c ≤ 1,∀i,∀c).

channels

c1 c2 c3 c4 c5

p1

p1

p1 p2 p2p2

p6

p3 p3p3

p4p4 p4

p5

p5p5

p6p6

c6

p1

p2 p3

p4

p5 p6

p7 p7 p7 p7

Fig. 4. An example for a NE channel allocation corresponding to the second
case of Theorem 1. Here |C| = 6, |N | = 7 and k = 4. Note that player p1

uses multiple radios on channel c1.

Theorem 1 establishes an interesting property about NE: In
fact, all NE channel allocations achieve load-balancing over
the channels in C. Furthermore, we observe two types of Nash
equilibria as expressed in the second condition of the theorem.
In the first type, each player distributes his radios such that he

has at most one radio per channel. Intuitively, this results in
load balancing. Note, however, the existence of a second type
of Nash equilibria, in which some players allocate multiple
radios on certain channels.

In the next theorem, we will show that allowing selfish
channel allocation results in an efficient spectrum utilization
if the rate function is independent of the number of radios on
a certain channel. This theorem is a generalization of Fact 1.

Theorem 2: Assume that the rate function R(·) is indepen-
dent of kc on any channel c. Then any NE channel allocation
S∗ is Pareto-optimal.

Note that this result does not hold for decreasing rate
functions, because the players might remove some of their
radios to decrease the total number of radios on certain
channels. If they do this mutually, they could mutually increase
each others payoff. This issue leads us to cooperative games
and is part of our future work.

V. FAIRNESS ISSUES

In this section, we study the fairness properties of the
selfish multi-radio channel allocation game. Fairness is an
important aspect of resource allocation problems in general,
and of computer networks in particular. We have seen in
Section IV that in the selfish multi-radio channel allocation
problem, the NE achieve load balancing. Unfortunately, these
NE might be highly unfair by giving advantage to some players
and neglecting others. For example, in the channel allocation
presented in Figure 4 assuming that the rate function R(·) is
constant, player p1 has the total rate U1 = 19

20 , whereas player
p4 has the total rate U4 = 16

20 . In order to study the fairness
properties of the NE channel allocations, we use a particular
metric called max-min fairness (MMF) as defined in [5]:

Definition 3: (Max-Min Fairness – MMF): The strategy
matrix Smmf is max-min fair if the payoff of player i cannot
be increased without decreasing the payoff of another player
j for which Ui(Smmf ) ≥ Uj(Smmf ).

Using this concept, we identify the max-min fair NE channel
allocations as expressed in Theorem 3.

Theorem 3: A NE channel allocation S∗ is max-min fair if
and only if

∑
c∈Cmin

ki,c =
∑

c∈Cmin
kj,c for all i, j ∈ N .

This implies that Ui = Uj ,∀i, j ∈ N .
In other words, if the total number of radios in the least

allocated channels are equal for every player, the NE alloca-
tion is max-min fair. For example, the channel allocation in
Figure 3 is max-min fair.

From this theorem, we can immediately see that the per-
fectly balanced channel allocation is also max-min fair.

Corollary 1: If S∗ is a NE such that Cmin = Cmax (i.e.,
kb = kc, ∀b, c ∈ C), then S∗ is max-min fair as well.

VI. COALITION-PROOF NASH EQUILIBRIA

The definition of NE expresses the resistance to the devi-
ation of a single player. In a realistic situation, it might be
possible that several players collude to increase their payoff
at the expense of other players. Such a collusion is called a
coalition. The problem of how these coalitions are formed is
a research topic in itself, thus in this paper we assume that
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any group of players can form a coalition. We can generalize
the notion of NE for coalitions as defined in [4].

Definition 4: (Coalition-Proof Nash Equilibrium – CPNE):
The strategy matrix Scpne defines a coalition-proof Nash
equilibrium if there does not exist any coalition Γ ⊂ N and
any strategy of this coalition S

′
Γ such that the following set of

conditions is true:

Ui(S
′
Γ, Scpne

−Γ ) ≥ Ui(S
cpne
Γ , Scpne

−Γ ), ∀i ∈ Γ (8)

with strict inequality for at least one player i ∈ Γ.
This means that no coalition can deviate from Scpne such

that the payoff of at least one of its members increases and the
payoff of other members do not change.3 From the definition,
we can immediately see the following fact:

Fact 2: If S∗ is a NE such that Cmin = Cmax (i.e., kb = kc,
∀b, c ∈ C), then S∗ is coalition-proof as well.

The intuition is that in a channel allocation S∗ for which
kb = kc, ∀b, c ∈ C, any player that changes necessarily
decreases his payoff, hence S∗ is a coalition-proof NE by
definition.

In the remainder of this section, we assume that Cmin 6=
Cmax and we derive results that highlight the coalition-proof
NE. First, we prove a necessary condition that enables a given
NE allocation to be coalition-proof in addition.

Theorem 4: If NE channel allocation Scpne is coalition-
proof then there does not exist two channels b ∈ Cmax and
c ∈ Cmin and two players i, j ∈ N such that ki,b > 0 and
kj,b > 0 whereas ki,c = 0 and kj,c = 0.

To illustrate the condition of Theorem 4, let us emphasize
that the example shown in Figure 3 is not a coalition-proof
NE. Assume that Γ = {p3, p4}. Then, player p4 can increase
the payoff of player p3 without decreasing his own payoff
by moving his radio from channel c6 to c1. We provide an
example for a coalition-proof NE in Figure 5.

channels

p4p3

p2p1

p3

p3

p1p1

p3

p4

c4c3c2c1 c5

p1

p2p2p2

p4

p4

c6

p2

p1

p3 p4

Fig. 5. An example for a coalition-proof NE channel allocation, where
|C| = 6, |N | = 4 and k = 5.

We could not prove that the set of conditions in Theorem 4
is sufficient to establish a coalition-proof NE, neither could
we find a counterexample, where the conditions hold and
the channel allocation is not coalition-proof NE. Hence, we
formulate the following conjecture.

Conjecture 1: If there does not exist two channels b ∈ Cmax

and c ∈ Cmin and two players i, j ∈ N such that ki,b > 0 and
kj,b > 0 whereas ki,c = 0 and kj,c = 0 then the NE channel
allocation Scpne is coalition-proof. Hence the above condition
is a necessary and sufficient condition.

3Note that our definition corresponds to the principle of weak deviation.
One can define the notion of a strict deviation of a coalition which requires
that each coalition member increases its payoff by deviating. In the literature
of coalition-proof equilibria, both concepts are used.

Nonetheless, we can show that the set of coalition-proof NE
channel allocations is a subset of the max-min fair channel
allocations.

Theorem 5: If NE channel allocation S is coalition-proof
(strictly speaking if the necessary condition expressed in
Theorem 4 holds) then it is max-min fair as well.

VII. CONVERGENCE TO A NASH EQUILIBRIUM

We have demonstrated in Section IV that the non-
cooperative behavior of the selfish players leads to load-
balancing Nash equilibria. In this section, we propose three
algorithms, each using a different set of available information,
to enable the selfish players to converge to one of these Nash
equilibria from an arbitrary initial configuration. The three
algorithms are the following: 1) a centralized algorithm using
perfect information, 2) a distributed algorithm using perfect
information, and 3) a distributed algorithm using imperfect
(local) information.

A. Centralized Algorithm Using Perfect Information

We have proved in Theorem 1 that a Nash equilibrium chan-
nel allocation has a load-balancing property. In addition, we
have shown in Theorem 2 that for a constant rate function the
Nash equilibria are Pareto-optimal as well. First we present the
pseudo-code of Algorithm 1, a simple centralized algorithm to
achieve one of these efficient Nash equilibria.

Algorithm 1 NE channel allocation with global coordination
and perfect information

1: for i = 1 to |N | do
2: for j = 1 to k do
3: if kc = kl,∀c, l ∈ C then
4: use radio j on a channel c, where ki,c = 0
5: else
6: use radio j on a channel c, where kc = minl∈C kl

7: end if
8: end for
9: end for

Using the algorithm, the players allocate their radios such
that they fill the channels almost equally. Note that the algo-
rithm requires the sequential action of the players and hence it
needs global coordination. In addition, the players must have
perfect information about the number of radios on each of
the channels. This can be achieved by the global coordination
mentioned before or by having an extra radio per device for
scanning the channels. Global coordination is unlikely to exist
in a wireless networking scenario with selfish players. The
second assumption about perfect information might not hold
either, because selfish players should allocate all of their radios
for communication as shown in Lemma 1. It is possible to
model the cost of scanning with one radio instead of using it
for communication. The investigation of this issue is part of
our future work.

B. Distributed Algorithm Using Perfect Information

In order to overcome the limitations of the centralized
algorithm proposed in Section VII-A, we suggest a second



IEEE INFOCOM 2007 6

algorithm that does not require global coordination, but still
assumes perfect information about the available channels.

We define a round-based distributed algorithm that works
as follows. First, we assume that there exists a random radio
assignment of the players over the channels. For simplicity,
we exclude the Nash equilibria that correspond to the second
case of Theorem 1. This means that we assume that no player
allocates more than one device on any channel. After the
initial channel assignment, each player evaluates the number
of radios (which defines the approximate length of the round)
on each of the channels c ∈ C and tries to improve his total
rate by reorganizing his radios. Unfortunately, this procedure
might result in a continuous reallocation of the radios for all
players. An example for such a continuous reorganization is
shown in Figure 6, where channel c6 is empty and thus each
player moves his radio from c1 to c6. In the next round, the
same effect happens and they all move their radios back from
c6 to c1.

channels

p3

p2

p1

p3

p1

p2

p1

p3

c4c3c2c1 c5

p2

c6

p1

p2 p3

p4 p4 p4

p4

Fig. 6. An example for a channel allocation which results in a continuous
reallocation of the radios for all players (i.e., each player moves his radio from
c1 to c5 and back) if there is no randomized backoff mechanism implemented.
In this example, |C| = 6, |N | = 4 and k = 4.

To avoid these unstable channel allocations, we leverage
the technique of backoff mechanism well known in the IEEE
802.11 medium access technology [23]. We define a backoff
window W and each player chooses a random initial value
for his backoff counter with uniform probability from the set
{1, . . . ,W}. Then in every round each player decreases his
backoff counter by one and applies the re-allocation of his
radios only when the backoff counter reaches zero. After he
changes his channel allocation, he resets the backoff counter
as described previously. We can notice that using the backoff
mechanism, the players play a game in an almost sequential
order.

We provide the pseudo-code for Algorithm 2 as follows.
We can prove that Algorithm 2 stabilizes in one of the load-

balancing Nash equilibrium channel allocations.
Theorem 6: Algorithm 2 converges to one of the NE chan-

nel allocations.

C. Distributed Algorithm Using Imperfect Information

The distributed algorithm presented in Section VII-B still
uses perfect information. Hence, the limitations due to this
property are the same as for Algorithm 1.

In this subsection, we assume that players have imperfect in-
formation, meaning that they know the total number of radios
on only those channels on which they operate a radio. In order
to improve their performance, they proceed as follows. Each
player applies the random backoff mechanism we introduced

Algorithm 2 Distributed NE channel allocation algorithm
using perfect information

1: random channel allocation
2: while not in a NE do
3: get the current channel allocation
4: for i = 1 to |N | do
5: if backoff counter is 0 then
6: reorganize the radios of i in order to maximize the total rate:
7: for j = 1 to k do
8: assume that radio j uses channel b
9: move the radio j from b to channel cmin if ∃cmin ∈ C,

cmin = arg minc kc such that ki,cmin = 0 and kcmin <
kb − 1

10: end for
11: reset the backoff counter to a new value from the set

{1, . . . , W}
12: else
13: decrease the backoff counter value by one
14: end if
15: end for
16: end while

in Section VII-B. In each round where player i’s backoff
counter is equal to zero, he calculates the average number
of devices on the channels he knows (recall that we denote
this set by Ci). We denote the average number of devices
on the channels in Ci by mi. For each channel b ∈ Ci with
kb − mi ≥ 1 player i moves his radio to another channel
c /∈ Ci. The probability to chose a channel c /∈ Ci is 1

|C| . This is
the first property of the algorithm with imperfect information.

Similarly to Theorem 6, we can show that the above proce-
dure reaches a stable state. Unfortunately, the available local
information might be insufficient for the players to determine
if the achieved stable state is Nash equilibrium. We show an
example for such a “false Nash equilibrium” in Figure 7.
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Fig. 7. An example for a stability state using the distributed algorithm
with imperfect information. Here |C| = 6, |N | = 5 and k = 3. Each
player believes that this is a Nash equilibrium due to the insufficient local
information.

In order to solve the problem of inefficient stable states,
we introduce the following mechanism: player i checks the
number of radios for each of the channels b ∈ Ci as suggested
above and with a small probability ε he moves his radio
to another channel c /∈ Ci even if 0 < kb − mi < 1.
He chooses the new channel c with a probability 1

|C\Ci| as
presented before. This second property allows us to resolve
the inefficient stability states, but at the same time, it will also
cause the instability of the Nash equilibria.

We provide the description of our algorithm below. Note
that this algorithm now includes both properties: 1) the backoff
mechanism and 2) the mechanism to resolve inefficient stable
states.

Due to the second property of our algorithm, its does
not perfectly converge to the existing Nash equilibria (more
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Algorithm 3 Distributed NE channel allocation algorithm
using local information

1: random channel allocation
2: while () do
3: get the current channel allocation
4: for i = 1 to |N | do
5: if backoff counter is 0 then
6: if (maxc∈Ci (kc)−minc∈Ci (kc) > 1) then
7: for j = 1 to k do
8: assume that radio j uses channel b
9: if kb > mi then

10: move the radio j from b to c /∈ Ci, where c is chosen
with uniform random probability from the set C\Ci

11: end if
12: end for
13: else
14: for j = 1 to k do
15: assume that radio j uses channel b
16: if kb ≥ mi then
17: move the radio j from b to c /∈ Ci with probability

ε, where c is chosen with uniform random probability
from the set C\Ci

18: end if
19: end for
20: end if
21: reset the backoff counter to a new value from the set

{1, . . . , W}
22: else
23: decrease the backoff counter value by one
24: end if
25: end for
26: end while

precisely, it converges there with high probability, but it does
not stay in a Nash equilibrium solution). Nevertheless, we can
observe that the algorithm remains in states that are “close”
to Nash equilibria in terms of load-balancing. We demonstrate
this intuition by the simulations presented in Section VII-D.

D. Simulation Results for Algorithm 3

We implemented Algorithm 3 in MATLAB and with a spe-
cial focus on wireless IEEE 802.11a protocol (meaning that we
have chosen 8 orthogonal channels as a default value for |C|).
In this subsection, we present our simulation results showing
the convergence time and efficiency of Algorithm 3. In each
of the simulations, we assume a constant rate function R(·).
Note however, that the algorithm shows similar properties for
any decreasing rate function introduced in Section III.

Let us first highlight the best and worst case in terms of the
desired load-balancing for Algorithm 3. The best case is one of
the NE channel allocations, and the worst case is characterized
by the fact that there exist k channels where each of the
players have a radio, whereas the rest of the channels have
no radios at all. In Figure 8, we present an example of the
worst case channel allocation that is opposed to the best case
NE in Figure 3 for |C| = 6 and we refer to it as unbalanced
(UB) channel allocation.

We calculate the average number of radios per channel as
m = |N |·k

|C| . We can compare the utilization of every channel
c to the average to achieve the total balance of the channel
allocation S:

Definition 5: (Balance:) The balance β of a channel allo-
cation S is defined as the sum β(S) =

∑
c∈|C| |kc −m|.
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Fig. 8. An example for a worst case channel allocation for Algorithm 3.
The channel allocation is completely unbalanced, as opposed to the NE (best
case) shown in Figure 3. Here |C| = 6, |N | = 4 and k = 4.

The notion of balance allows us to define the efficiency of
a given channel allocation as a proportion between the worst
case and the best case channel allocations.

Definition 6: (Efficiency:) The efficiency φ of a channel
allocation S is defined as φ(S) = β(SUB)−β(S)

β(SUB)−β(SNE) .
Let us emphasize that for any channel allocation S, it is true

that 0 ≤ φ(S) ≤ 1. Furthermore, φ(SNE) = 1 and φ(SUB) =
0 as desired by this measure.

Let us now define the average efficiency over time and the
efficiency ratio. To this end, we denote the efficiency in round
t by φ(t, S).

Definition 7: (Average efficiency and efficiency ratio:) The
average efficiency φ at round T is defined as the sum
φ(T, S) =

∑T
t=1 φ(t, S). We define the efficiency ratio as

Φ = lim infT→∞
φ(T,S)

T .
Note that the efficiency ratio expresses the performance of

the distributed channel allocation algorithm per round over a
long period of time. In our simulations, we applied a finite
simulation time, hence we measured the efficiency ratio for
T = 10000 rounds.

Finally, let us define the convergence time of Algorithm 3
as follows.

Definition 8: (Convergence Time): We define the conver-
gence time of Algorithm 3, as the time when the channel
allocation efficiency first reaches the value of one (i.e., the
efficiency of a NE, φ(SNE)).

We assume that the duration of one round in the updating
algorithm is 10ms. This duration of one round corresponds
roughly to the time needed for all these devices to transmit
one MAC layer packet, i.e., the time that the devices can learn
about other devices in the channel. As mentioned previously,
we run each simulation for 10000 rounds, which corresponds
to 100s according to the assumption above. Each average value
is the result of 100 simulation runs. For the convergence time
simulations, we present our results with a 0.95 confidence level
on the mean value.

Let us first present an example run for our distributed
algorithm with imperfect information in Figure 9 for 20s. One
can notice that the algorithm quickly reaches the NE state and
thus the average efficiency converges to one. Also, one can
observe that the players sometimes leave the NE state due to
the second property (change a radio on a channel c ∈ Cmax

in a stable state with probability ε), but they quickly return to
it.

Suppose that the total data rate per channel is R(kc) =
54Mbps, for any kc. In Figure 10, we present a snapshot of
the total payoff for the players in one of the NE reached in
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Fig. 9. One simulation run: Efficiency and averaged efficiency vs. time using
the values |C| = 8, |N | = 10, k = 3 and W = 15.

the previous simulation. One can observe that the total payoff
is very similar for the players, hence we conclude that our
algorithm converges to fair channel allocations.
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Fig. 10. Total payoff received by each device in the NE channel allocation.
We have the parameter values |C| = 8, |N | = 10 and k = 3.

Next, we investigate the effect of the number of radios per
device on the efficiency ratio (shown in Figure 11a) and on the
convergence time of the algorithm (presented in Figure 11b).
We can observe on the figures that Algorithm 3 converges
fast with high efficiency ratio if the number of radios per
device is 3 or 5. The higher the number of radios per device,
the more channels the players know. Hence, more information
helps them making their decisions. This is the reason that the
convergence is slower if the number of radios is 2. For two
radios per devices, the effect of changing the channel for even
one radio has a significant impact that undermines the stability
of the NE more easily. If the number of radios is 4, then
convergence is slow for another reason: There is only one Nash
equilibrium channel allocation, namely the perfectly flat one;
thus it takes more time to find it. With longer convergence,
the efficiency ratio decreases as well.

In Figures 11c and 11d, we investigate the effect of the
number of players, each device having three radios. We can
see that our distributed algorithm keeps the system in an
efficient state, although the efficiency is slightly lower for
multiples of |N | with higher convergence time. As mentioned
above, the reason is that in this case, there exists only one NE
(the perfectly load-balanced) and thus it is more difficult to
converge to.

In summary, we can observe that, in spite of the fact
that convergence is not theoretically ensured, the proposed
distributed algorithm based on imperfect information ensures
high system performance and good convergence time.

VIII. CONCLUSION

In this paper, we have considered the problem of com-
petitive channel allocation among devices that use multiple
radios. Our main conclusion is that, in spite of the non-
cooperative behavior of such devices, their Nash equilibrium
channel allocations result in load balancing. We have also
studied fairness issues and coalition-proof NE. Finally, we
have provided three algorithms to achieve the efficient, load-
balancing Nash equilibrium channel allocation and we have
studied their convergence properties either theoretically or
numerically.

In terms of future work, we will extend our current model
to include different channel characteristics and payoffs. We
will also pursue our theoretical investigations of selfish multi-
radio channel allocation for general topologies. We will pay
particular attention to the application of existing fairness
metrics in the competitive context. In addition, we will take
the cost of channel scanning into consideration. Last but not
least, we will study convergence algorithms that achieve Nash
equilibria in general topologies.
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